Recent Results on a Generalization of the Laplacian
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200131 |
Resumo: | In this paper we discuss recent results regarding a generalization of the Laplacian. To be more precise, fix a function W(x1, ..., xd) = Σdk=1 Wk(xk), where each Wk : ℝ → ℝ is a right continuous with left limits and strictly increasing function. Using W, we construct the generalized laplacian ℒW = Σdi=1 ∂xi ∂wi, where ∂wi is a generalized differential operator induced by the function Wi. We present results on spectral properties of ℒW, Sobolev spaces induced by ℒW(W-Sobolev spaces), generalized partial differential equations, generalized stochastic differential equations and stochastic homogenization. |
id |
SBMAC-1_3cd088513d6036892c143abeb1f69694 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512015000200131 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Recent Results on a Generalization of the LaplacianW-Sobolev spacegeneralized Laplacianhomogenizationpartial differential equationsIn this paper we discuss recent results regarding a generalization of the Laplacian. To be more precise, fix a function W(x1, ..., xd) = Σdk=1 Wk(xk), where each Wk : ℝ → ℝ is a right continuous with left limits and strictly increasing function. Using W, we construct the generalized laplacian ℒW = Σdi=1 ∂xi ∂wi, where ∂wi is a generalized differential operator induced by the function Wi. We present results on spectral properties of ℒW, Sobolev spaces induced by ℒW(W-Sobolev spaces), generalized partial differential equations, generalized stochastic differential equations and stochastic homogenization.Sociedade Brasileira de Matemática Aplicada e Computacional2015-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200131TEMA (São Carlos) v.16 n.2 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.02.0131info:eu-repo/semantics/openAccessSIMAS,A.B.VALENTIM,F.J.eng2015-09-15T00:00:00Zoai:scielo:S2179-84512015000200131Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-09-15T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Recent Results on a Generalization of the Laplacian |
title |
Recent Results on a Generalization of the Laplacian |
spellingShingle |
Recent Results on a Generalization of the Laplacian SIMAS,A.B. W-Sobolev space generalized Laplacian homogenization partial differential equations |
title_short |
Recent Results on a Generalization of the Laplacian |
title_full |
Recent Results on a Generalization of the Laplacian |
title_fullStr |
Recent Results on a Generalization of the Laplacian |
title_full_unstemmed |
Recent Results on a Generalization of the Laplacian |
title_sort |
Recent Results on a Generalization of the Laplacian |
author |
SIMAS,A.B. |
author_facet |
SIMAS,A.B. VALENTIM,F.J. |
author_role |
author |
author2 |
VALENTIM,F.J. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
SIMAS,A.B. VALENTIM,F.J. |
dc.subject.por.fl_str_mv |
W-Sobolev space generalized Laplacian homogenization partial differential equations |
topic |
W-Sobolev space generalized Laplacian homogenization partial differential equations |
description |
In this paper we discuss recent results regarding a generalization of the Laplacian. To be more precise, fix a function W(x1, ..., xd) = Σdk=1 Wk(xk), where each Wk : ℝ → ℝ is a right continuous with left limits and strictly increasing function. Using W, we construct the generalized laplacian ℒW = Σdi=1 ∂xi ∂wi, where ∂wi is a generalized differential operator induced by the function Wi. We present results on spectral properties of ℒW, Sobolev spaces induced by ℒW(W-Sobolev spaces), generalized partial differential equations, generalized stochastic differential equations and stochastic homogenization. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200131 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200131 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2015.016.02.0131 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.16 n.2 2015 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220116705280 |