Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter

Detalhes bibliográficos
Autor(a) principal: Paganotti, Ivan
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: por
Título da fonte: Mídia.e.Cotidiano
Texto Completo: https://periodicos.uff.br/midiaecotidiano/article/view/47883
Resumo: Fact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections.
id UFF-19_aaf397c25b69c41e9e78ef9e6af4f005
oai_identifier_str oai:ojs.pkp.sfu.ca:article/47883
network_acronym_str UFF-19
network_name_str Mídia.e.Cotidiano
repository_id_str
spelling Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on TwitterRecepción y resistencia a correcciones de fake news en la pandemia: el robot Fátima, de la agencia Aos Fatos, en TwitterAcolhimento e resistência a correções de fake news na pandemia: a experiência do robô Fátima, da agência Aos Fatos, no Twitternoticias falsaschequeoTwitterrobotinteracciónfake newsfact checkingTwitterrobotinteractionnotícias falsaschecagemTwitterrobôinteraçãoFact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections.Las agencias de verificación de hechos enfrentan el desafío de hacer que sus controles lleguen a audiencias que desconocen, sospechan u son hostiles a sus métodos de verificación. Las redes sociales, un espacio en que proliferan noticias falsas, pueden también ampliar el público de estas agencias. El artículo evalúa la experiencia de la cuenta automatizada creada por la agencia Aos Fatos para identificar e interactuar con los usuarios de la red social Twitter que publican información falsa. El robot apodado “Fátima” escanea publicaciones para identificar links que ya han sido refutados por la agencia verificadora, y responde a los usuarios indicando el error y su corrección. Esta encuesta busca evaluar qué noticias falsas fueron más frecuentes durante la pandemia en 2020 y cómo interactuaron los usuarios en respuesta a estas correcciones.Agências de checagem de fatos enfrentam o desafio de fazer com que suas verificações alcancem públicos que desconhecem, desconfiam ou hostilizam seus métodos de verificação. Redes sociais, espaço em que proliferam notícias falsas, podem ser um espaço para ampliar o público dessas agências. O artigo avalia a experiência da conta automatizada no Twitter criada pela agência Aos Fatos para identificar e interagir com usuários dessa rede social que publicam informações falsas. O robô apelidado de “Fátima” varre o Twitter para identificar postagens com links que já foram refutados pela agência de verificação, e responde aos usuários indicando o erro e sua correção. Esta pesquisa procura avaliar quais notícias falsas foram mais frequentes durante a pandemia em 2020, e de que forma os usuários interagiram em resposta a essas correções.ABEC2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.uff.br/midiaecotidiano/article/view/4788310.22409/rmc.v15i3.47883Revista Mídia e Cotidiano; v. 15 n. 3 (2021): A informação e o mal: disputas éticas, políticas e epistemológicas da Comunicação em tempos extremos; 169-1932178-602X10.22409/rmc.v15i3reponame:Mídia.e.Cotidianoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporhttps://periodicos.uff.br/midiaecotidiano/article/view/47883/30084Copyright (c) 2021 Revista Mídia e Cotidianoinfo:eu-repo/semantics/openAccessPaganotti, Ivan2021-10-08T14:13:51Zoai:ojs.pkp.sfu.ca:article/47883Revistahttps://periodicos.uff.br/midiaecotidiano/indexPUBhttps://periodicos.uff.br/midiaecotidiano/oaimidiaecotidiano.ega@id.uff.br||revistamidiaecotidiano@gmail.com2178-602X2178-602Xopendoar:2021-10-08T14:13:51Mídia.e.Cotidiano - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
Recepción y resistencia a correcciones de fake news en la pandemia: el robot Fátima, de la agencia Aos Fatos, en Twitter
Acolhimento e resistência a correções de fake news na pandemia: a experiência do robô Fátima, da agência Aos Fatos, no Twitter
title Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
spellingShingle Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
Paganotti, Ivan
noticias falsas
chequeo
Twitter
robot
interacción
fake news
fact checking
Twitter
robot
interaction
notícias falsas
checagem
Twitter
robô
interação
title_short Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
title_full Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
title_fullStr Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
title_full_unstemmed Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
title_sort Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
author Paganotti, Ivan
author_facet Paganotti, Ivan
author_role author
dc.contributor.author.fl_str_mv Paganotti, Ivan
dc.subject.por.fl_str_mv noticias falsas
chequeo
Twitter
robot
interacción
fake news
fact checking
Twitter
robot
interaction
notícias falsas
checagem
Twitter
robô
interação
topic noticias falsas
chequeo
Twitter
robot
interacción
fake news
fact checking
Twitter
robot
interaction
notícias falsas
checagem
Twitter
robô
interação
description Fact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.uff.br/midiaecotidiano/article/view/47883
10.22409/rmc.v15i3.47883
url https://periodicos.uff.br/midiaecotidiano/article/view/47883
identifier_str_mv 10.22409/rmc.v15i3.47883
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.uff.br/midiaecotidiano/article/view/47883/30084
dc.rights.driver.fl_str_mv Copyright (c) 2021 Revista Mídia e Cotidiano
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Revista Mídia e Cotidiano
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ABEC
publisher.none.fl_str_mv ABEC
dc.source.none.fl_str_mv Revista Mídia e Cotidiano; v. 15 n. 3 (2021): A informação e o mal: disputas éticas, políticas e epistemológicas da Comunicação em tempos extremos; 169-193
2178-602X
10.22409/rmc.v15i3
reponame:Mídia.e.Cotidiano
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Mídia.e.Cotidiano
collection Mídia.e.Cotidiano
repository.name.fl_str_mv Mídia.e.Cotidiano - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv midiaecotidiano.ega@id.uff.br||revistamidiaecotidiano@gmail.com
_version_ 1797053446515326976