Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Mídia.e.Cotidiano |
Texto Completo: | https://periodicos.uff.br/midiaecotidiano/article/view/47883 |
Resumo: | Fact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections. |
id |
UFF-19_aaf397c25b69c41e9e78ef9e6af4f005 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/47883 |
network_acronym_str |
UFF-19 |
network_name_str |
Mídia.e.Cotidiano |
repository_id_str |
|
spelling |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on TwitterRecepción y resistencia a correcciones de fake news en la pandemia: el robot Fátima, de la agencia Aos Fatos, en TwitterAcolhimento e resistência a correções de fake news na pandemia: a experiência do robô Fátima, da agência Aos Fatos, no Twitternoticias falsaschequeoTwitterrobotinteracciónfake newsfact checkingTwitterrobotinteractionnotícias falsaschecagemTwitterrobôinteraçãoFact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections.Las agencias de verificación de hechos enfrentan el desafío de hacer que sus controles lleguen a audiencias que desconocen, sospechan u son hostiles a sus métodos de verificación. Las redes sociales, un espacio en que proliferan noticias falsas, pueden también ampliar el público de estas agencias. El artículo evalúa la experiencia de la cuenta automatizada creada por la agencia Aos Fatos para identificar e interactuar con los usuarios de la red social Twitter que publican información falsa. El robot apodado “Fátima” escanea publicaciones para identificar links que ya han sido refutados por la agencia verificadora, y responde a los usuarios indicando el error y su corrección. Esta encuesta busca evaluar qué noticias falsas fueron más frecuentes durante la pandemia en 2020 y cómo interactuaron los usuarios en respuesta a estas correcciones.Agências de checagem de fatos enfrentam o desafio de fazer com que suas verificações alcancem públicos que desconhecem, desconfiam ou hostilizam seus métodos de verificação. Redes sociais, espaço em que proliferam notícias falsas, podem ser um espaço para ampliar o público dessas agências. O artigo avalia a experiência da conta automatizada no Twitter criada pela agência Aos Fatos para identificar e interagir com usuários dessa rede social que publicam informações falsas. O robô apelidado de “Fátima” varre o Twitter para identificar postagens com links que já foram refutados pela agência de verificação, e responde aos usuários indicando o erro e sua correção. Esta pesquisa procura avaliar quais notícias falsas foram mais frequentes durante a pandemia em 2020, e de que forma os usuários interagiram em resposta a essas correções.ABEC2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.uff.br/midiaecotidiano/article/view/4788310.22409/rmc.v15i3.47883Revista Mídia e Cotidiano; v. 15 n. 3 (2021): A informação e o mal: disputas éticas, políticas e epistemológicas da Comunicação em tempos extremos; 169-1932178-602X10.22409/rmc.v15i3reponame:Mídia.e.Cotidianoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporhttps://periodicos.uff.br/midiaecotidiano/article/view/47883/30084Copyright (c) 2021 Revista Mídia e Cotidianoinfo:eu-repo/semantics/openAccessPaganotti, Ivan2021-10-08T14:13:51Zoai:ojs.pkp.sfu.ca:article/47883Revistahttps://periodicos.uff.br/midiaecotidiano/indexPUBhttps://periodicos.uff.br/midiaecotidiano/oaimidiaecotidiano.ega@id.uff.br||revistamidiaecotidiano@gmail.com2178-602X2178-602Xopendoar:2021-10-08T14:13:51Mídia.e.Cotidiano - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter Recepción y resistencia a correcciones de fake news en la pandemia: el robot Fátima, de la agencia Aos Fatos, en Twitter Acolhimento e resistência a correções de fake news na pandemia: a experiência do robô Fátima, da agência Aos Fatos, no Twitter |
title |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
spellingShingle |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter Paganotti, Ivan noticias falsas chequeo robot interacción fake news fact checking robot interaction notícias falsas checagem robô interação |
title_short |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
title_full |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
title_fullStr |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
title_full_unstemmed |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
title_sort |
Reception and resistance in response to fake news corrections in the pandemic: the experience of robot Fátima, from Aos Fatos agency, on Twitter |
author |
Paganotti, Ivan |
author_facet |
Paganotti, Ivan |
author_role |
author |
dc.contributor.author.fl_str_mv |
Paganotti, Ivan |
dc.subject.por.fl_str_mv |
noticias falsas chequeo robot interacción fake news fact checking robot interaction notícias falsas checagem robô interação |
topic |
noticias falsas chequeo robot interacción fake news fact checking robot interaction notícias falsas checagem robô interação |
description |
Fact-checking agencies face the challenge of making their checks reach audiences who are unaware, suspicious or hostile to their verification methods. Social networks, a space in which fake news proliferates, can also expand the public of these agencies. This article evaluates the experience of an automated Twitter account created by Aos Fatos agency to identify and interact with users of this social network who publish false information. The robot dubbed “Fátima” scans Twitter to identify posts with links that have already been refuted by the verification agency, and responds to users indicating the error and its correction. This survey seeks to assess which false news was most frequent during the pandemic in 2020, and how users interacted in response to these corrections. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.uff.br/midiaecotidiano/article/view/47883 10.22409/rmc.v15i3.47883 |
url |
https://periodicos.uff.br/midiaecotidiano/article/view/47883 |
identifier_str_mv |
10.22409/rmc.v15i3.47883 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.uff.br/midiaecotidiano/article/view/47883/30084 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Revista Mídia e Cotidiano info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Revista Mídia e Cotidiano |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ABEC |
publisher.none.fl_str_mv |
ABEC |
dc.source.none.fl_str_mv |
Revista Mídia e Cotidiano; v. 15 n. 3 (2021): A informação e o mal: disputas éticas, políticas e epistemológicas da Comunicação em tempos extremos; 169-193 2178-602X 10.22409/rmc.v15i3 reponame:Mídia.e.Cotidiano instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Mídia.e.Cotidiano |
collection |
Mídia.e.Cotidiano |
repository.name.fl_str_mv |
Mídia.e.Cotidiano - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
midiaecotidiano.ega@id.uff.br||revistamidiaecotidiano@gmail.com |
_version_ |
1797053446515326976 |