Números algébricos e transcendentes.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
Texto Completo: | https://repository.ufrpe.br/handle/123456789/3635 |
Resumo: | Esta monografia abordará os números algébricos e os números transcendentes, e tem o intuito de despertar o interesse do leitor a respeito desses números tão singulares. Além disso, busca servir como um estudo de aprofundamento sobre o assunto, abordando definições, resultados importantes e alguns fatos de interesse. Em um primeiro momento, são apresentados conceitos introdutórios dos números algébricos e transcendentes, e exemplos. Em seguida, adentramos em resultados e temas indispensáveis quando se estuda os números transcendentes, como enumerabilidade, transcendência do número de Euler, aproximações por racionais, números de Liouville e a função zeta de Riemann. Esta última, está entre as funções mais importantes da matemática, pois se relaciona à hipótese de Riemann, que é considerada por alguns como um problema de grande relevância para a área. |
id |
UFRPE_120b9e4f5efd30a8fc2065eb027c39f7 |
---|---|
oai_identifier_str |
oai:dspace:123456789/3635 |
network_acronym_str |
UFRPE |
network_name_str |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
repository_id_str |
https://v2.sherpa.ac.uk/id/repository/10612 |
spelling |
Números algébricos e transcendentes.Números algébricosNúmeros transcendentesEsta monografia abordará os números algébricos e os números transcendentes, e tem o intuito de despertar o interesse do leitor a respeito desses números tão singulares. Além disso, busca servir como um estudo de aprofundamento sobre o assunto, abordando definições, resultados importantes e alguns fatos de interesse. Em um primeiro momento, são apresentados conceitos introdutórios dos números algébricos e transcendentes, e exemplos. Em seguida, adentramos em resultados e temas indispensáveis quando se estuda os números transcendentes, como enumerabilidade, transcendência do número de Euler, aproximações por racionais, números de Liouville e a função zeta de Riemann. Esta última, está entre as funções mais importantes da matemática, pois se relaciona à hipótese de Riemann, que é considerada por alguns como um problema de grande relevância para a área.The present monography addresses the algebraic numbers and transcendental numbers, and aims to arouse the interest of the interlocutor about these singular numbers. Furthermore, it seeks to serve as an in-depth study of the subject, stating definitions, important results and some interesting facts. In a first moment, introductory concepts of algebraic and transcendental numbers along with examples are brought forward. Then, we get into results and indispensable themes when it comes to studying transcendental numbers, such as enumerability, the transcendental nature of Euler’s number, rational approximation, Liouville numbers and Riemann zeta function. This last one is among the most important functions of mathematics because it is related to Riemann hypothesis, which is considered by some to be one of the most relevant problems in math.BrasilGuedes, Gabriel Araújohttp://lattes.cnpq.br/9015568401665464http://lattes.cnpq.br/6087142765405339Lira, Jamerson Silva2022-11-29T19:29:39Z2022-11-29T19:29:39Z2021-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis50 f.application/pdfLira, Jamerson Silva. Números algébricos e transcendentes. 2021. 50 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Departamento de Matemática, Universidade Federal Rural de Pernambuco, Recife, 2021.https://repository.ufrpe.br/handle/123456789/3635porAtribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BRopenAccessinfo:eu-repo/semantics/openAccessreponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)instname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2022-11-29T19:30:13Zoai:dspace:123456789/3635Repositório InstitucionalPUBhttps://repository.ufrpe.br/oai/requestrepositorio.sib@ufrpe.bropendoar:https://v2.sherpa.ac.uk/id/repository/106122022-11-29T19:30:13Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.none.fl_str_mv |
Números algébricos e transcendentes. |
title |
Números algébricos e transcendentes. |
spellingShingle |
Números algébricos e transcendentes. Lira, Jamerson Silva Números algébricos Números transcendentes |
title_short |
Números algébricos e transcendentes. |
title_full |
Números algébricos e transcendentes. |
title_fullStr |
Números algébricos e transcendentes. |
title_full_unstemmed |
Números algébricos e transcendentes. |
title_sort |
Números algébricos e transcendentes. |
author |
Lira, Jamerson Silva |
author_facet |
Lira, Jamerson Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Guedes, Gabriel Araújo http://lattes.cnpq.br/9015568401665464 http://lattes.cnpq.br/6087142765405339 |
dc.contributor.author.fl_str_mv |
Lira, Jamerson Silva |
dc.subject.por.fl_str_mv |
Números algébricos Números transcendentes |
topic |
Números algébricos Números transcendentes |
description |
Esta monografia abordará os números algébricos e os números transcendentes, e tem o intuito de despertar o interesse do leitor a respeito desses números tão singulares. Além disso, busca servir como um estudo de aprofundamento sobre o assunto, abordando definições, resultados importantes e alguns fatos de interesse. Em um primeiro momento, são apresentados conceitos introdutórios dos números algébricos e transcendentes, e exemplos. Em seguida, adentramos em resultados e temas indispensáveis quando se estuda os números transcendentes, como enumerabilidade, transcendência do número de Euler, aproximações por racionais, números de Liouville e a função zeta de Riemann. Esta última, está entre as funções mais importantes da matemática, pois se relaciona à hipótese de Riemann, que é considerada por alguns como um problema de grande relevância para a área. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-22 2022-11-29T19:29:39Z 2022-11-29T19:29:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Lira, Jamerson Silva. Números algébricos e transcendentes. 2021. 50 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Departamento de Matemática, Universidade Federal Rural de Pernambuco, Recife, 2021. https://repository.ufrpe.br/handle/123456789/3635 |
identifier_str_mv |
Lira, Jamerson Silva. Números algébricos e transcendentes. 2021. 50 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Departamento de Matemática, Universidade Federal Rural de Pernambuco, Recife, 2021. |
url |
https://repository.ufrpe.br/handle/123456789/3635 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR openAccess info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
50 f. application/pdf |
dc.publisher.none.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Brasil |
dc.source.none.fl_str_mv |
reponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
collection |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
repository.name.fl_str_mv |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
repositorio.sib@ufrpe.br |
_version_ |
1809277147401945088 |