A matemática na música: divisibilidade do compasso
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/00130000070f1 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/15170 |
Resumo: | This work presents a study on the relation between music and mathematics, highlighting the great mathematicians involved and their contributions to the evolution of the theoretical musical study. Also, a theoretical response was sought to a questioning of the author on the impossibility of filling a compass 4 4 without using repeated figures or point of increase,which mathematically means to study Sn = 1 + ½ +¼ + ⅛ + ... + 1 2n e lim n!1 Sn. Subsequently it was observed the existence of a Zeno paradox, on the arrow reaching the target, and rewritten in musical timings to be answered in a way analogous to the problem of filling a compass 4 4 . In addition, the work studied the Pythagorean scale and simplifications presented by Gioseffo Zarlino, as well as Marin Mersenne’s smooth tuning system. Afterwards, the length of a rope and its subdivisions in each scale was compared and the characteristics of each one were observed. The frequencies of the musical notes on the tempered scale and the audible capacity of the human ear were analyzed. The results were presented in a program developed in VBA language to assist in the construction and study of a monocord. Also presented was a proposal for a high school class involving music and mathematics. It was concluded that the relationship between music and mathematics generated great results and revealed that there is still much to be explored of the beauty and accuracy that both provide together. |
id |
UFSM_2f2b19de40fd8749af39b7c7e67f086c |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/15170 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
A matemática na música: divisibilidade do compassoMathematics in music: compass divisibilityMatemáticaMúsicaDivisões de tempos musicaisMathematicsMusicDivisions of musical timingsCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThis work presents a study on the relation between music and mathematics, highlighting the great mathematicians involved and their contributions to the evolution of the theoretical musical study. Also, a theoretical response was sought to a questioning of the author on the impossibility of filling a compass 4 4 without using repeated figures or point of increase,which mathematically means to study Sn = 1 + ½ +¼ + ⅛ + ... + 1 2n e lim n!1 Sn. Subsequently it was observed the existence of a Zeno paradox, on the arrow reaching the target, and rewritten in musical timings to be answered in a way analogous to the problem of filling a compass 4 4 . In addition, the work studied the Pythagorean scale and simplifications presented by Gioseffo Zarlino, as well as Marin Mersenne’s smooth tuning system. Afterwards, the length of a rope and its subdivisions in each scale was compared and the characteristics of each one were observed. The frequencies of the musical notes on the tempered scale and the audible capacity of the human ear were analyzed. The results were presented in a program developed in VBA language to assist in the construction and study of a monocord. Also presented was a proposal for a high school class involving music and mathematics. It was concluded that the relationship between music and mathematics generated great results and revealed that there is still much to be explored of the beauty and accuracy that both provide together.Este trabalho apresenta um estudo sobre a relação da música com a matemática, ressaltando os grandes matemáticos envolvidos e suas contribuições para evolução do estudo teórico musical. Também, buscou-se uma resposta teórica a um questionamento do autor sobre a impossibilidade de preencher um compasso 4 4 sem utilizar figuras repetidas ou ponto de aumento, que matematicamente significa estudar Sn = 1 + ½ +¼ + ⅛ + ... + 1 2n e lim n!1 Sn. Posteriormente, foi observado a existência do paradoxo de Zenão, sobre a flecha atingir o alvo, e reescrito em tempos musicais para ser respondido de forma análoga ao problema do preenchimento de um compasso 4 4 . Além disso, neste trabalho estudou-se a escala pitagórica e as simplificações apresentada por Gioseffo Zarlino, assim como o sistema suave de afinação de Marin Mersenne. Após, foi comparado o comprimento de uma corda e suas subdivisões em cada escala e foram observadas as características de cada uma. Analisou-se as frenquências das notas musicais na escala temperada e a capacidade audível do ouvido humano. Os resultados foram analizados em um programa elaborado em liguagem VBA para auxiliar na construção e estudo de um monocórdio. Também foi apresentada uma proposta de aula para o ensino médio envolvendo música e matemática. Concluiu-se que a relação entre a música e a matemática gerou grandes resultados e desmonstrou que existe muito ainda a ser explorado sobre a beleza e exatidão que ambas proporcionam juntas.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em Matemática em Rede NacionalCentro de Ciências Naturais e ExatasBrum, Valéria de Fátima Maciel Cardosohttp://lattes.cnpq.br/7057570207918370Buligon, Lidianehttp://lattes.cnpq.br/4755671184790141Cesca Filho, Vitalinohttp://lattes.cnpq.br/0048422446197920Chaves, Mariel de Paula2018-12-26T12:19:40Z2018-12-26T12:19:40Z2018-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://repositorio.ufsm.br/handle/1/15170ark:/26339/00130000070f1porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2018-12-27T05:01:28Zoai:repositorio.ufsm.br:1/15170Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2018-12-27T05:01:28Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
A matemática na música: divisibilidade do compasso Mathematics in music: compass divisibility |
title |
A matemática na música: divisibilidade do compasso |
spellingShingle |
A matemática na música: divisibilidade do compasso Chaves, Mariel de Paula Matemática Música Divisões de tempos musicais Mathematics Music Divisions of musical timings CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
A matemática na música: divisibilidade do compasso |
title_full |
A matemática na música: divisibilidade do compasso |
title_fullStr |
A matemática na música: divisibilidade do compasso |
title_full_unstemmed |
A matemática na música: divisibilidade do compasso |
title_sort |
A matemática na música: divisibilidade do compasso |
author |
Chaves, Mariel de Paula |
author_facet |
Chaves, Mariel de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brum, Valéria de Fátima Maciel Cardoso http://lattes.cnpq.br/7057570207918370 Buligon, Lidiane http://lattes.cnpq.br/4755671184790141 Cesca Filho, Vitalino http://lattes.cnpq.br/0048422446197920 |
dc.contributor.author.fl_str_mv |
Chaves, Mariel de Paula |
dc.subject.por.fl_str_mv |
Matemática Música Divisões de tempos musicais Mathematics Music Divisions of musical timings CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Matemática Música Divisões de tempos musicais Mathematics Music Divisions of musical timings CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This work presents a study on the relation between music and mathematics, highlighting the great mathematicians involved and their contributions to the evolution of the theoretical musical study. Also, a theoretical response was sought to a questioning of the author on the impossibility of filling a compass 4 4 without using repeated figures or point of increase,which mathematically means to study Sn = 1 + ½ +¼ + ⅛ + ... + 1 2n e lim n!1 Sn. Subsequently it was observed the existence of a Zeno paradox, on the arrow reaching the target, and rewritten in musical timings to be answered in a way analogous to the problem of filling a compass 4 4 . In addition, the work studied the Pythagorean scale and simplifications presented by Gioseffo Zarlino, as well as Marin Mersenne’s smooth tuning system. Afterwards, the length of a rope and its subdivisions in each scale was compared and the characteristics of each one were observed. The frequencies of the musical notes on the tempered scale and the audible capacity of the human ear were analyzed. The results were presented in a program developed in VBA language to assist in the construction and study of a monocord. Also presented was a proposal for a high school class involving music and mathematics. It was concluded that the relationship between music and mathematics generated great results and revealed that there is still much to be explored of the beauty and accuracy that both provide together. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-26T12:19:40Z 2018-12-26T12:19:40Z 2018-03-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/15170 |
dc.identifier.dark.fl_str_mv |
ark:/26339/00130000070f1 |
url |
http://repositorio.ufsm.br/handle/1/15170 |
identifier_str_mv |
ark:/26339/00130000070f1 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática em Rede Nacional Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática em Rede Nacional Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172295857012736 |