Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.7554/eLife.11285 http://hdl.handle.net/11449/220588 |
Resumo: | Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. |
id |
UNSP_144a209bd7fede47d58a7b9021796f06 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220588 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for BrazilRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.Climate Dynamics and Impacts Unit Institut Català de Ciències del ClimaCentro de Previsãode Tempoe Estudos Climáticos Instituto Nacional de Pesquisas EspaciaisFundaão Oswaldo CruzUniversidade Estadual PaulistaMinistério da SaúdeUniversidade de BrasíliaExeter Climate Systems College of Engineering Mathematics and Physical Sciences University of ExeterInstitució Catalana de Recerca i Estudis AvançatsUniversidade Estadual PaulistaInstitut Català de Ciències del ClimaInstituto Nacional de Pesquisas EspaciaisFundaão Oswaldo CruzUniversidade Estadual Paulista (UNESP)Ministério da SaúdeUniversidade de Brasília (UnB)University of ExeterInstitució Catalana de Recerca i Estudis AvançatsLowe, RachelCoelho, Caio AsBarcellos, ChristovamCarvalho, Marilia SáCatão, Rafael De Castro [UNESP]Coelho, Giovanini E.Ramalho, Walter MassaBailey, Trevor C.Stephenson, David B.Rodó, Xavier2022-04-28T19:03:04Z2022-04-28T19:03:04Z2016-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.7554/eLife.11285eLife, v. 5, n. FEBRUARY2016, 2016.2050-084Xhttp://hdl.handle.net/11449/22058810.7554/eLife.112852-s2.0-84961267144Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengeLifeinfo:eu-repo/semantics/openAccess2022-04-28T19:03:04Zoai:repositorio.unesp.br:11449/220588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:38:03.967031Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
spellingShingle |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil Lowe, Rachel |
title_short |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_full |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_fullStr |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_full_unstemmed |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_sort |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
author |
Lowe, Rachel |
author_facet |
Lowe, Rachel Coelho, Caio As Barcellos, Christovam Carvalho, Marilia Sá Catão, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodó, Xavier |
author_role |
author |
author2 |
Coelho, Caio As Barcellos, Christovam Carvalho, Marilia Sá Catão, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodó, Xavier |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Institut Català de Ciències del Clima Instituto Nacional de Pesquisas Espaciais Fundaão Oswaldo Cruz Universidade Estadual Paulista (UNESP) Ministério da Saúde Universidade de Brasília (UnB) University of Exeter Institució Catalana de Recerca i Estudis Avançats |
dc.contributor.author.fl_str_mv |
Lowe, Rachel Coelho, Caio As Barcellos, Christovam Carvalho, Marilia Sá Catão, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodó, Xavier |
description |
Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-24 2022-04-28T19:03:04Z 2022-04-28T19:03:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.7554/eLife.11285 eLife, v. 5, n. FEBRUARY2016, 2016. 2050-084X http://hdl.handle.net/11449/220588 10.7554/eLife.11285 2-s2.0-84961267144 |
url |
http://dx.doi.org/10.7554/eLife.11285 http://hdl.handle.net/11449/220588 |
identifier_str_mv |
eLife, v. 5, n. FEBRUARY2016, 2016. 2050-084X 10.7554/eLife.11285 2-s2.0-84961267144 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
eLife |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129538253651968 |