Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

Detalhes bibliográficos
Autor(a) principal: Lowe, Rachel
Data de Publicação: 2016
Outros Autores: Coelho, Caio As, Barcellos, Christovam, Carvalho, Marilia Sá, Catão, Rafael De Castro [UNESP], Coelho, Giovanini E., Ramalho, Walter Massa, Bailey, Trevor C., Stephenson, David B., Rodó, Xavier
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.7554/eLife.11285
http://hdl.handle.net/11449/220588
Resumo: Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.
id UNSP_144a209bd7fede47d58a7b9021796f06
oai_identifier_str oai:repositorio.unesp.br:11449/220588
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Evaluating probabilistic dengue risk forecasts from a prototype early warning system for BrazilRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.Climate Dynamics and Impacts Unit Institut Català de Ciències del ClimaCentro de Previsãode Tempoe Estudos Climáticos Instituto Nacional de Pesquisas EspaciaisFundaão Oswaldo CruzUniversidade Estadual PaulistaMinistério da SaúdeUniversidade de BrasíliaExeter Climate Systems College of Engineering Mathematics and Physical Sciences University of ExeterInstitució Catalana de Recerca i Estudis AvançatsUniversidade Estadual PaulistaInstitut Català de Ciències del ClimaInstituto Nacional de Pesquisas EspaciaisFundaão Oswaldo CruzUniversidade Estadual Paulista (UNESP)Ministério da SaúdeUniversidade de Brasília (UnB)University of ExeterInstitució Catalana de Recerca i Estudis AvançatsLowe, RachelCoelho, Caio AsBarcellos, ChristovamCarvalho, Marilia SáCatão, Rafael De Castro [UNESP]Coelho, Giovanini E.Ramalho, Walter MassaBailey, Trevor C.Stephenson, David B.Rodó, Xavier2022-04-28T19:03:04Z2022-04-28T19:03:04Z2016-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.7554/eLife.11285eLife, v. 5, n. FEBRUARY2016, 2016.2050-084Xhttp://hdl.handle.net/11449/22058810.7554/eLife.112852-s2.0-84961267144Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengeLifeinfo:eu-repo/semantics/openAccess2022-04-28T19:03:04Zoai:repositorio.unesp.br:11449/220588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:38:03.967031Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
spellingShingle Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
Lowe, Rachel
title_short Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_full Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_fullStr Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_full_unstemmed Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_sort Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
author Lowe, Rachel
author_facet Lowe, Rachel
Coelho, Caio As
Barcellos, Christovam
Carvalho, Marilia Sá
Catão, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodó, Xavier
author_role author
author2 Coelho, Caio As
Barcellos, Christovam
Carvalho, Marilia Sá
Catão, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodó, Xavier
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Institut Català de Ciències del Clima
Instituto Nacional de Pesquisas Espaciais
Fundaão Oswaldo Cruz
Universidade Estadual Paulista (UNESP)
Ministério da Saúde
Universidade de Brasília (UnB)
University of Exeter
Institució Catalana de Recerca i Estudis Avançats
dc.contributor.author.fl_str_mv Lowe, Rachel
Coelho, Caio As
Barcellos, Christovam
Carvalho, Marilia Sá
Catão, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodó, Xavier
description Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-24
2022-04-28T19:03:04Z
2022-04-28T19:03:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.7554/eLife.11285
eLife, v. 5, n. FEBRUARY2016, 2016.
2050-084X
http://hdl.handle.net/11449/220588
10.7554/eLife.11285
2-s2.0-84961267144
url http://dx.doi.org/10.7554/eLife.11285
http://hdl.handle.net/11449/220588
identifier_str_mv eLife, v. 5, n. FEBRUARY2016, 2016.
2050-084X
10.7554/eLife.11285
2-s2.0-84961267144
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv eLife
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129538253651968