Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.7554/eLife.11285 http://hdl.handle.net/11449/158748 |
Resumo: | Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. |
id |
UNSP_5627b2503549d73bf8c84a2d3bd0de3f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/158748 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for BrazilRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.Seventh Framework ProgrammeSeventh Framework Programme EUPORIAS projectConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e ProjetosFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)ICREAInst Catala Ciencies Clima, Climate Dynam & Impacts Unit, Barcelona, SpainInst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Cachoeira Paulista, BrazilFundacao Oswaldo Cruz, Rio De Janeiro, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, BrazilMinist Saude, Programa Nacl Controle Dengue, Coordenacao Geral, Brasilia, DF, BrazilUniv Brasilia, Fac Ceilandia, Brasilia, DF, BrazilUniv Exeter, Coll Engn Math & Phys Sci, Exeter Climate Syst, Exeter, Devon, EnglandInst Catalana Recerca & Estudis Avancats, Barcelona, SpainUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, BrazilSeventh Framework Programme: FP7-HEALTH.2011.2.3.3-2Seventh Framework Programme: 282378Seventh Framework Programme: FP7-ENV-2012-1Seventh Framework Programme: 308378Seventh Framework Programme EUPORIAS project: FP7-ENV.2012.6.1-1Seventh Framework Programme EUPORIAS project: 308291CNPq: 306863/2013-8CNPq: 309692/2013-0Financiadora de Estudos e Projetos: 01.13.0353-00FAPERJ: E-23557/2014FAPESP: BEPE 2014/17676-0Elife Sciences Publications LtdInst Catala Ciencies ClimaInst Nacl Pesquisas EspaciaisFundacao Oswaldo CruzUniversidade Estadual Paulista (Unesp)Minist SaudeUniversidade de Brasília (UnB)Univ ExeterInst Catalana Recerca & Estudis AvancatsLowe, RachelCoelho, Caio A. S.Barcellos, ChristovamCarvalho, Marilia SaCatao, Rafael De Castro [UNESP]Coelho, Giovanini E.Ramalho, Walter MassaBailey, Trevor C.Stephenson, David B.Rodo, Xavier2018-11-26T15:28:52Z2018-11-26T15:28:52Z2016-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://dx.doi.org/10.7554/eLife.11285Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016.2050-084Xhttp://hdl.handle.net/11449/15874810.7554/eLife.11285WOS:000371885100001WOS000371885100001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElifeinfo:eu-repo/semantics/openAccess2023-12-15T06:18:39Zoai:repositorio.unesp.br:11449/158748Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:24:54.650771Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
spellingShingle |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil Lowe, Rachel |
title_short |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_full |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_fullStr |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_full_unstemmed |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
title_sort |
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil |
author |
Lowe, Rachel |
author_facet |
Lowe, Rachel Coelho, Caio A. S. Barcellos, Christovam Carvalho, Marilia Sa Catao, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodo, Xavier |
author_role |
author |
author2 |
Coelho, Caio A. S. Barcellos, Christovam Carvalho, Marilia Sa Catao, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodo, Xavier |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Inst Catala Ciencies Clima Inst Nacl Pesquisas Espaciais Fundacao Oswaldo Cruz Universidade Estadual Paulista (Unesp) Minist Saude Universidade de Brasília (UnB) Univ Exeter Inst Catalana Recerca & Estudis Avancats |
dc.contributor.author.fl_str_mv |
Lowe, Rachel Coelho, Caio A. S. Barcellos, Christovam Carvalho, Marilia Sa Catao, Rafael De Castro [UNESP] Coelho, Giovanini E. Ramalho, Walter Massa Bailey, Trevor C. Stephenson, David B. Rodo, Xavier |
description |
Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-24 2018-11-26T15:28:52Z 2018-11-26T15:28:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.7554/eLife.11285 Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016. 2050-084X http://hdl.handle.net/11449/158748 10.7554/eLife.11285 WOS:000371885100001 WOS000371885100001.pdf |
url |
http://dx.doi.org/10.7554/eLife.11285 http://hdl.handle.net/11449/158748 |
identifier_str_mv |
Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016. 2050-084X 10.7554/eLife.11285 WOS:000371885100001 WOS000371885100001.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Elife |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
18 application/pdf |
dc.publisher.none.fl_str_mv |
Elife Sciences Publications Ltd |
publisher.none.fl_str_mv |
Elife Sciences Publications Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129199325577216 |