Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

Detalhes bibliográficos
Autor(a) principal: Lowe, Rachel
Data de Publicação: 2016
Outros Autores: Coelho, Caio A. S., Barcellos, Christovam, Carvalho, Marilia Sa, Catao, Rafael De Castro [UNESP], Coelho, Giovanini E., Ramalho, Walter Massa, Bailey, Trevor C., Stephenson, David B., Rodo, Xavier
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.7554/eLife.11285
http://hdl.handle.net/11449/158748
Resumo: Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.
id UNSP_5627b2503549d73bf8c84a2d3bd0de3f
oai_identifier_str oai:repositorio.unesp.br:11449/158748
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Evaluating probabilistic dengue risk forecasts from a prototype early warning system for BrazilRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.Seventh Framework ProgrammeSeventh Framework Programme EUPORIAS projectConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e ProjetosFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)ICREAInst Catala Ciencies Clima, Climate Dynam & Impacts Unit, Barcelona, SpainInst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Cachoeira Paulista, BrazilFundacao Oswaldo Cruz, Rio De Janeiro, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, BrazilMinist Saude, Programa Nacl Controle Dengue, Coordenacao Geral, Brasilia, DF, BrazilUniv Brasilia, Fac Ceilandia, Brasilia, DF, BrazilUniv Exeter, Coll Engn Math & Phys Sci, Exeter Climate Syst, Exeter, Devon, EnglandInst Catalana Recerca & Estudis Avancats, Barcelona, SpainUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, BrazilSeventh Framework Programme: FP7-HEALTH.2011.2.3.3-2Seventh Framework Programme: 282378Seventh Framework Programme: FP7-ENV-2012-1Seventh Framework Programme: 308378Seventh Framework Programme EUPORIAS project: FP7-ENV.2012.6.1-1Seventh Framework Programme EUPORIAS project: 308291CNPq: 306863/2013-8CNPq: 309692/2013-0Financiadora de Estudos e Projetos: 01.13.0353-00FAPERJ: E-23557/2014FAPESP: BEPE 2014/17676-0Elife Sciences Publications LtdInst Catala Ciencies ClimaInst Nacl Pesquisas EspaciaisFundacao Oswaldo CruzUniversidade Estadual Paulista (Unesp)Minist SaudeUniversidade de Brasília (UnB)Univ ExeterInst Catalana Recerca & Estudis AvancatsLowe, RachelCoelho, Caio A. S.Barcellos, ChristovamCarvalho, Marilia SaCatao, Rafael De Castro [UNESP]Coelho, Giovanini E.Ramalho, Walter MassaBailey, Trevor C.Stephenson, David B.Rodo, Xavier2018-11-26T15:28:52Z2018-11-26T15:28:52Z2016-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://dx.doi.org/10.7554/eLife.11285Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016.2050-084Xhttp://hdl.handle.net/11449/15874810.7554/eLife.11285WOS:000371885100001WOS000371885100001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElifeinfo:eu-repo/semantics/openAccess2023-12-15T06:18:39Zoai:repositorio.unesp.br:11449/158748Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:24:54.650771Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
spellingShingle Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
Lowe, Rachel
title_short Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_full Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_fullStr Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_full_unstemmed Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
title_sort Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil
author Lowe, Rachel
author_facet Lowe, Rachel
Coelho, Caio A. S.
Barcellos, Christovam
Carvalho, Marilia Sa
Catao, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodo, Xavier
author_role author
author2 Coelho, Caio A. S.
Barcellos, Christovam
Carvalho, Marilia Sa
Catao, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodo, Xavier
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Inst Catala Ciencies Clima
Inst Nacl Pesquisas Espaciais
Fundacao Oswaldo Cruz
Universidade Estadual Paulista (Unesp)
Minist Saude
Universidade de Brasília (UnB)
Univ Exeter
Inst Catalana Recerca & Estudis Avancats
dc.contributor.author.fl_str_mv Lowe, Rachel
Coelho, Caio A. S.
Barcellos, Christovam
Carvalho, Marilia Sa
Catao, Rafael De Castro [UNESP]
Coelho, Giovanini E.
Ramalho, Walter Massa
Bailey, Trevor C.
Stephenson, David B.
Rodo, Xavier
description Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-24
2018-11-26T15:28:52Z
2018-11-26T15:28:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.7554/eLife.11285
Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016.
2050-084X
http://hdl.handle.net/11449/158748
10.7554/eLife.11285
WOS:000371885100001
WOS000371885100001.pdf
url http://dx.doi.org/10.7554/eLife.11285
http://hdl.handle.net/11449/158748
identifier_str_mv Elife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016.
2050-084X
10.7554/eLife.11285
WOS:000371885100001
WOS000371885100001.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Elife
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 18
application/pdf
dc.publisher.none.fl_str_mv Elife Sciences Publications Ltd
publisher.none.fl_str_mv Elife Sciences Publications Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129199325577216