On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification

Detalhes bibliográficos
Autor(a) principal: Lopes, Ricardo
Data de Publicação: 2016
Outros Autores: Costa, Kelton [UNESP], Papa, Joao [UNESP], Schwenker, F., Abbas, H. M., ElGayar, N., Trentin, E.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-46182-3_10
http://hdl.handle.net/11449/159238
Resumo: Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.
id UNSP_5d20eee75ff3339999a36b87b10cbf80
oai_identifier_str oai:repositorio.unesp.br:11449/159238
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the Evaluation of Tensor-Based Representations for Optimum-Path Forest ClassificationOptimum-Path ForestTensorsGait and face recognitionTensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.Inst Pesquisas Eldorado, Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSpringerInst Pesquisas EldoradoUniversidade Estadual Paulista (Unesp)Lopes, RicardoCosta, Kelton [UNESP]Papa, Joao [UNESP]Schwenker, F.Abbas, H. M.ElGayar, N.Trentin, E.2018-11-26T15:37:34Z2018-11-26T15:37:34Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject117-125application/pdfhttp://dx.doi.org/10.1007/978-3-319-46182-3_10Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.0302-9743http://hdl.handle.net/11449/15923810.1007/978-3-319-46182-3_10WOS:000389727700010WOS000389727700010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengArtificial Neural Networks In Pattern Recognition0,295info:eu-repo/semantics/openAccess2024-01-14T06:24:11Zoai:repositorio.unesp.br:11449/159238Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:58:58.113364Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
title On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
spellingShingle On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
Lopes, Ricardo
Optimum-Path Forest
Tensors
Gait and face recognition
title_short On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
title_full On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
title_fullStr On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
title_full_unstemmed On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
title_sort On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
author Lopes, Ricardo
author_facet Lopes, Ricardo
Costa, Kelton [UNESP]
Papa, Joao [UNESP]
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
author_role author
author2 Costa, Kelton [UNESP]
Papa, Joao [UNESP]
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Inst Pesquisas Eldorado
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Lopes, Ricardo
Costa, Kelton [UNESP]
Papa, Joao [UNESP]
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
dc.subject.por.fl_str_mv Optimum-Path Forest
Tensors
Gait and face recognition
topic Optimum-Path Forest
Tensors
Gait and face recognition
description Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-26T15:37:34Z
2018-11-26T15:37:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-46182-3_10
Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.
0302-9743
http://hdl.handle.net/11449/159238
10.1007/978-3-319-46182-3_10
WOS:000389727700010
WOS000389727700010.pdf
url http://dx.doi.org/10.1007/978-3-319-46182-3_10
http://hdl.handle.net/11449/159238
identifier_str_mv Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.
0302-9743
10.1007/978-3-319-46182-3_10
WOS:000389727700010
WOS000389727700010.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Artificial Neural Networks In Pattern Recognition
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 117-125
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129478953533440