On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-46182-3_10 http://hdl.handle.net/11449/159238 |
Resumo: | Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces. |
id |
UNSP_5d20eee75ff3339999a36b87b10cbf80 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159238 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest ClassificationOptimum-Path ForestTensorsGait and face recognitionTensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.Inst Pesquisas Eldorado, Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSpringerInst Pesquisas EldoradoUniversidade Estadual Paulista (Unesp)Lopes, RicardoCosta, Kelton [UNESP]Papa, Joao [UNESP]Schwenker, F.Abbas, H. M.ElGayar, N.Trentin, E.2018-11-26T15:37:34Z2018-11-26T15:37:34Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject117-125application/pdfhttp://dx.doi.org/10.1007/978-3-319-46182-3_10Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.0302-9743http://hdl.handle.net/11449/15923810.1007/978-3-319-46182-3_10WOS:000389727700010WOS000389727700010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengArtificial Neural Networks In Pattern Recognition0,295info:eu-repo/semantics/openAccess2024-01-14T06:24:11Zoai:repositorio.unesp.br:11449/159238Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:58:58.113364Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
title |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
spellingShingle |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification Lopes, Ricardo Optimum-Path Forest Tensors Gait and face recognition |
title_short |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
title_full |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
title_fullStr |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
title_full_unstemmed |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
title_sort |
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification |
author |
Lopes, Ricardo |
author_facet |
Lopes, Ricardo Costa, Kelton [UNESP] Papa, Joao [UNESP] Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
author_role |
author |
author2 |
Costa, Kelton [UNESP] Papa, Joao [UNESP] Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Inst Pesquisas Eldorado Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Lopes, Ricardo Costa, Kelton [UNESP] Papa, Joao [UNESP] Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
dc.subject.por.fl_str_mv |
Optimum-Path Forest Tensors Gait and face recognition |
topic |
Optimum-Path Forest Tensors Gait and face recognition |
description |
Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-26T15:37:34Z 2018-11-26T15:37:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-46182-3_10 Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016. 0302-9743 http://hdl.handle.net/11449/159238 10.1007/978-3-319-46182-3_10 WOS:000389727700010 WOS000389727700010.pdf |
url |
http://dx.doi.org/10.1007/978-3-319-46182-3_10 http://hdl.handle.net/11449/159238 |
identifier_str_mv |
Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016. 0302-9743 10.1007/978-3-319-46182-3_10 WOS:000389727700010 WOS000389727700010.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Artificial Neural Networks In Pattern Recognition 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
117-125 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129478953533440 |