On partial (Co)actions on coalgebras : globalizations and some galois theory

Detalhes bibliográficos
Autor(a) principal: Castro, Felipe Lopes
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/206505
Resumo: Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20].
id URGS_0868d7793951ea4ae515b039b9c5771c
oai_identifier_str oai:www.lume.ufrgs.br:10183/206505
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Castro, Felipe LopesSant'Ana, Alveri Alves2020-03-06T04:14:05Z2015http://hdl.handle.net/10183/206505000955722Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20].application/pdfengÁlgebraTeoria de galoisHopf algebrasPartial actionPartial coactionGlobalizationGalois theoryOn partial (Co)actions on coalgebras : globalizations and some galois theoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de MatemáticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2015doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000955722.pdf.txt000955722.pdf.txtExtracted Texttext/plain135535http://www.lume.ufrgs.br/bitstream/10183/206505/2/000955722.pdf.txtbd4d56b825acd99ec6d8601084e2b624MD52ORIGINAL000955722.pdfTexto completo (inglês)application/pdf591026http://www.lume.ufrgs.br/bitstream/10183/206505/1/000955722.pdf70cbb9af63bb3709c41b15cadded8176MD5110183/2065052020-03-07 04:16:41.570412oai:www.lume.ufrgs.br:10183/206505Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-03-07T07:16:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv On partial (Co)actions on coalgebras : globalizations and some galois theory
title On partial (Co)actions on coalgebras : globalizations and some galois theory
spellingShingle On partial (Co)actions on coalgebras : globalizations and some galois theory
Castro, Felipe Lopes
Álgebra
Teoria de galois
Hopf algebras
Partial action
Partial coaction
Globalization
Galois theory
title_short On partial (Co)actions on coalgebras : globalizations and some galois theory
title_full On partial (Co)actions on coalgebras : globalizations and some galois theory
title_fullStr On partial (Co)actions on coalgebras : globalizations and some galois theory
title_full_unstemmed On partial (Co)actions on coalgebras : globalizations and some galois theory
title_sort On partial (Co)actions on coalgebras : globalizations and some galois theory
author Castro, Felipe Lopes
author_facet Castro, Felipe Lopes
author_role author
dc.contributor.author.fl_str_mv Castro, Felipe Lopes
dc.contributor.advisor1.fl_str_mv Sant'Ana, Alveri Alves
contributor_str_mv Sant'Ana, Alveri Alves
dc.subject.por.fl_str_mv Álgebra
Teoria de galois
topic Álgebra
Teoria de galois
Hopf algebras
Partial action
Partial coaction
Globalization
Galois theory
dc.subject.eng.fl_str_mv Hopf algebras
Partial action
Partial coaction
Globalization
Galois theory
description Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20].
publishDate 2015
dc.date.issued.fl_str_mv 2015
dc.date.accessioned.fl_str_mv 2020-03-06T04:14:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/206505
dc.identifier.nrb.pt_BR.fl_str_mv 000955722
url http://hdl.handle.net/10183/206505
identifier_str_mv 000955722
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/206505/2/000955722.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/206505/1/000955722.pdf
bitstream.checksum.fl_str_mv bd4d56b825acd99ec6d8601084e2b624
70cbb9af63bb3709c41b15cadded8176
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085519055388672