On partial (Co)actions on coalgebras : globalizations and some galois theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/206505 |
Resumo: | Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20]. |
id |
URGS_0868d7793951ea4ae515b039b9c5771c |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/206505 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Castro, Felipe LopesSant'Ana, Alveri Alves2020-03-06T04:14:05Z2015http://hdl.handle.net/10183/206505000955722Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20].application/pdfengÁlgebraTeoria de galoisHopf algebrasPartial actionPartial coactionGlobalizationGalois theoryOn partial (Co)actions on coalgebras : globalizations and some galois theoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de MatemáticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2015doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000955722.pdf.txt000955722.pdf.txtExtracted Texttext/plain135535http://www.lume.ufrgs.br/bitstream/10183/206505/2/000955722.pdf.txtbd4d56b825acd99ec6d8601084e2b624MD52ORIGINAL000955722.pdfTexto completo (inglês)application/pdf591026http://www.lume.ufrgs.br/bitstream/10183/206505/1/000955722.pdf70cbb9af63bb3709c41b15cadded8176MD5110183/2065052020-03-07 04:16:41.570412oai:www.lume.ufrgs.br:10183/206505Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-03-07T07:16:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
title |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
spellingShingle |
On partial (Co)actions on coalgebras : globalizations and some galois theory Castro, Felipe Lopes Álgebra Teoria de galois Hopf algebras Partial action Partial coaction Globalization Galois theory |
title_short |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
title_full |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
title_fullStr |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
title_full_unstemmed |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
title_sort |
On partial (Co)actions on coalgebras : globalizations and some galois theory |
author |
Castro, Felipe Lopes |
author_facet |
Castro, Felipe Lopes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Castro, Felipe Lopes |
dc.contributor.advisor1.fl_str_mv |
Sant'Ana, Alveri Alves |
contributor_str_mv |
Sant'Ana, Alveri Alves |
dc.subject.por.fl_str_mv |
Álgebra Teoria de galois |
topic |
Álgebra Teoria de galois Hopf algebras Partial action Partial coaction Globalization Galois theory |
dc.subject.eng.fl_str_mv |
Hopf algebras Partial action Partial coaction Globalization Galois theory |
description |
Partial module coalgebra and partial comodule coalgebra are the dual notions of partial module algebra, and all these structures are close related. Partial module algebra was defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves and Batista in [1–3]. We are interested in some constructions made by Alves and Batista, namely: globalization for partial module algebras, a Morita context relating the invariant subalgebra and the partial smash product, and Galois theory. In this work, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable constructing a globalization, named standard. For the case of partial comodule coalgebra we need assume some kind of rationality condition to obtain a correspondent globalization. Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois coextension and show some properties, relating the Galois coextension for partial comodule coalgebra with the Galois extension for partial coaction on algebras, extending results of Dascalescu, Raianu, and Zhang obtained in [20]. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015 |
dc.date.accessioned.fl_str_mv |
2020-03-06T04:14:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/206505 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000955722 |
url |
http://hdl.handle.net/10183/206505 |
identifier_str_mv |
000955722 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/206505/2/000955722.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/206505/1/000955722.pdf |
bitstream.checksum.fl_str_mv |
bd4d56b825acd99ec6d8601084e2b624 70cbb9af63bb3709c41b15cadded8176 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085519055388672 |