Folheações rimeannianas e folheações duais

Detalhes bibliográficos
Autor(a) principal: Alves, Benigno Oliveira
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/
Resumo: Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap.
id USP_a5295585350bab1d1c84e8d19036e1fe
oai_identifier_str oai:teses.usp.br:tde-26062014-114617
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Folheações rimeannianas e folheações duaisSingular Rimannian foliation and dual foliationDual foliationDuality theoremFolheação dualFolheação riemanniana singularSingular Riemannian foliationTeorema de dualizaçãoUma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap.Let M be a Riemanniana manifold with nonnegative sectional curvature. A singular Riemannian foliation in M is a singular foliation with locally equidistant leaves. The dual leaf though p is the collection of the all points q in M such that p and q are connected with a piece-wise horizontal geodesic. The partition of M into the dual leaves is a singular foliation called dual foliation. Wilking proved that if the sectional curveture is positive, then the dual foliation consists of a single leaf. In other words, any two points in M can be connected with a piece-wise horizontal geodesic. In order to prove this result Wilking showed that, if M is nonnegatively curved, the normal bundle of a dual leaf along a piecewise horizontal geodesic is gerated for parallel Jacobi field. These results are used in the proof that the projection metric in the soul is smoth.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marcos Martins Alexandrino daAlves, Benigno Oliveira2013-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-26062014-114617Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Folheações rimeannianas e folheações duais
Singular Rimannian foliation and dual foliation
title Folheações rimeannianas e folheações duais
spellingShingle Folheações rimeannianas e folheações duais
Alves, Benigno Oliveira
Dual foliation
Duality theorem
Folheação dual
Folheação riemanniana singular
Singular Riemannian foliation
Teorema de dualização
title_short Folheações rimeannianas e folheações duais
title_full Folheações rimeannianas e folheações duais
title_fullStr Folheações rimeannianas e folheações duais
title_full_unstemmed Folheações rimeannianas e folheações duais
title_sort Folheações rimeannianas e folheações duais
author Alves, Benigno Oliveira
author_facet Alves, Benigno Oliveira
author_role author
dc.contributor.none.fl_str_mv Silva, Marcos Martins Alexandrino da
dc.contributor.author.fl_str_mv Alves, Benigno Oliveira
dc.subject.por.fl_str_mv Dual foliation
Duality theorem
Folheação dual
Folheação riemanniana singular
Singular Riemannian foliation
Teorema de dualização
topic Dual foliation
Duality theorem
Folheação dual
Folheação riemanniana singular
Singular Riemannian foliation
Teorema de dualização
description Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257394250252288